Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326622

RESUMO

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Metaloproteinase 8 da Matriz , Monócitos , Estresse Psicológico , Animais , Humanos , Camundongos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/enzimologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Espaço Extracelular/metabolismo , Metaloproteinase 8 da Matriz/sangue , Metaloproteinase 8 da Matriz/deficiência , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/química , Monócitos/imunologia , Monócitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Tecido Parenquimatoso/metabolismo , Análise da Expressão Gênica de Célula Única , Comportamento Social , Isolamento Social , Estresse Psicológico/sangue , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo
2.
Sci Rep ; 13(1): 13079, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567897

RESUMO

The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I. Our findings reveal that the Y321F substitution influences the expression of AMPAR subunits GluA2/3 and leads to alterations in the phosphorylation of key kinases, including Fyn, Lyn, p38, ERK1/2, JNK1/2/3, and p70 S6 kinase. These data illuminate the crucial role of MHC-I in AMPAR function and present a novel mechanism by which MHC-I integrates extracellular cues to modulate synaptic plasticity in neurons, which ultimately underpins learning and memory.


Assuntos
Ácido Glutâmico , Transdução de Sinais , Ácido Glutâmico/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Complexo Principal de Histocompatibilidade
3.
Clin Immunol ; 253: 109689, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422057

RESUMO

While many of the genes and molecular pathways in the germinal center B cell response which initiate protective antibody production are known, the contributions of individual molecular players in terminal B cell differentiation remain unclear. We have previously investigated how mutations in TACI gene, noted in about 10% of patients with common variable immunodeficiency, impair B cell differentiation and often, lead to lymphoid hyperplasia and autoimmunity. Unlike mouse B cells, human B cells express TACI-L (Long) and TACI-S (Short) isoforms, but only TACI-S promotes terminal B cell differentiation into plasma cells. Here we show that the expression of intracellular TACI-S increases with B cell activation, and colocalizes with BCMA and their ligand, APRIL. We show that the loss of APRIL impairs isotype class switch and leads to distinct metabolic and transcriptional changes. Our studies suggest that intracellular TACI-S and APRIL along with BCMA direct long-term PC differentiation and survival.


Assuntos
Antígeno de Maturação de Linfócitos B , Proteína Transmembrana Ativadora e Interagente do CAML , Camundongos , Animais , Humanos , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Linfócitos B , Plasmócitos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Fator Ativador de Células B
4.
Free Neuropathol ; 42023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37384330

RESUMO

Brain cell structure is a key determinant of neural function that is frequently altered in neurobiological disorders. Following the global loss of blood flow to the brain that initiates the postmortem interval (PMI), cells rapidly become depleted of energy and begin to decompose. To ensure that our methods for studying the brain using autopsy tissue are robust and reproducible, there is a critical need to delineate the expected changes in brain cell morphometry during the PMI. We searched multiple databases to identify studies measuring the effects of PMI on the morphometry (i.e. external dimensions) of brain cells. We screened 2119 abstracts, 361 full texts, and included 172 studies. Mechanistically, fluid shifts causing cell volume alterations and vacuolization are an early event in the PMI, while the loss of the ability to visualize cell membranes altogether is a later event. Decomposition rates are highly heterogenous and depend on the methods for visualization, the structural feature of interest, and modifying variables such as the storage temperature or the species. Geometrically, deformations of cell membranes are common early events that initiate within minutes. On the other hand, topological relationships between cellular features appear to remain intact for more extended periods. Taken together, there is an uncertain period of time, usually ranging from several hours to several days, over which cell membrane structure is progressively lost. This review may be helpful for investigators studying human postmortem brain tissue, wherein the PMI is an unavoidable aspect of the research.

5.
Acta Neuropathol Commun ; 11(1): 81, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173747

RESUMO

In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.


Assuntos
Malformações Arteriovenosas , Traumatismos por Explosões , Ratos , Masculino , Animais , Remodelação Vascular , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Encéfalo/patologia , Inflamação/patologia , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/patologia , Modelos Animais de Doenças
6.
Sci Rep ; 13(1): 6448, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081001

RESUMO

Major histocompatibility complex class I (MHC-I) proteins are expressed in neurons, where they regulate synaptic plasticity. However, the mechanisms by which MHC-I functions in the CNS remains unknown. Here we describe the first structural analysis of a MHC-I protein, to resolve underlying mechanisms that explains its function in the brain. We demonstrate that Y321F mutation of the conserved cytoplasmic tyrosine-based endocytosis motif YXXΦ in MHC-I affects spine density and synaptic structure without affecting neuronal complexity in the hippocampus, a region of the brain intimately involved in learning and memory. Furthermore, the impact of the Y321F substitution phenocopies MHC-I knock-out (null) animals, demonstrating that reverse, outside-in signalling events sensing the external environment is the major mechanism that conveys this information to the neuron and this has a previously undescribed yet essential role in the regulation of synaptic plasticity.


Assuntos
Encéfalo , Neurônios , Animais , Encéfalo/metabolismo , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Transdução de Sinais , Hipocampo/metabolismo
7.
Res Sq ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778505

RESUMO

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

8.
Mol Neurodegener ; 17(1): 52, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978378

RESUMO

BACKGROUND: Genetic mutations in beta-glucocerebrosidase (GBA) represent the major genetic risk factor for Parkinson's disease (PD). GBA participates in both the endo-lysosomal pathway and the immune response, two important mechanisms involved in the pathogenesis of PD. However, modifiers of GBA penetrance have not yet been fully elucidated. METHODS: We characterized the transcriptomic profiles of circulating monocytes in a population of patients with PD and healthy controls (CTRL) with and without GBA variants (n = 23 PD/GBA, 13 CTRL/GBA, 56 PD, 66 CTRL) and whole blood (n = 616 PD, 362 CTRL, 127 PD/GBA, 165 CTRL/GBA). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Ultrastructural characterization of isolated CD14+ monocytes in the four groups was also performed through electron microscopy. RESULTS: We observed hundreds of differentially expressed genes and dysregulated pathways when comparing manifesting and non-manifesting GBA mutation carriers. Specifically, when compared to idiopathic PD, PD/GBA showed dysregulation in genes involved in alpha-synuclein degradation, aging and amyloid processing. Gene-based outlier analysis confirmed the involvement of lysosomal, membrane trafficking, and mitochondrial processing in manifesting compared to non-manifesting GBA-carriers, as also observed at the ultrastructural levels. Transcriptomic results were only partially replicated in an independent cohort of whole blood samples, suggesting cell-type specific changes. CONCLUSIONS: Overall, our transcriptomic analysis of primary monocytes identified gene targets and biological processes that can help in understanding the pathogenic mechanisms associated with GBA mutations in the context of PD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Heterozigoto , Humanos , Monócitos/metabolismo , Mutação/genética , Doença de Parkinson/metabolismo , Transcriptoma
9.
Acta Neuropathol Commun ; 9(1): 167, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654480

RESUMO

Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.


Assuntos
Astrócitos/patologia , Traumatismos por Explosões/patologia , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Doenças Neuroinflamatórias/patologia , Animais , Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/etiologia , Células Endoteliais/patologia , Doenças Neuroinflamatórias/etiologia , Pericitos/patologia , Ratos , Ratos Long-Evans , Remodelação Vascular/fisiologia
10.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915974

RESUMO

The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy). In the present study, we report neutron exposure induced synaptic plasticity in the medial prefrontal cortex, accompanied by microglial activation and significant synaptic loss in the hippocampus. In a parallel study, neutron exposure was also found to alter fluorescence assisted single synaptosome LTP (FASS-LTP) in the hippocampus of rats, that may be related to a reduced ability to insert AMPAR into the post-synaptic membrane, which may arise from increased phosphorylation of the serine 845 residue of the GluA1 subunit. Thus, we demonstrate for the first time, that low dose chronic neutron irradiation impacts homeostatic synaptic plasticity in the hippocampal-cortical circuit in two rodent species, and that the ability to successfully encode associative recognition memory is a dynamic, multicircuit process, possibly involving compensatory changes in AMPAR density on the synaptic surface.


Assuntos
Região CA1 Hipocampal/efeitos da radiação , Radiação Cósmica/efeitos adversos , Plasticidade Neuronal/efeitos da radiação , Nêutrons/efeitos adversos , Córtex Pré-Frontal/efeitos da radiação , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Região CA1 Hipocampal/metabolismo , Dendritos/efeitos da radiação , Proteína 4 Homóloga a Disks-Large/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
11.
J Comp Neurol ; 526(17): 2845-2855, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198564

RESUMO

High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration. Here we demonstrate that mice exposed to high-energy charged particles exhibited alterations in dendritic spine density in the hippocampus, with a significant decrease of thin spines in mice exposed to helium, oxygen, and silicon, compared to sham-irradiated controls. Electron microscopy confirmed these findings and revealed a significant decrease in overall synapse density and in nonperforated synapse density, with helium and silicon exhibiting more detrimental effects than oxygen. Degeneration of myelin was also evident in exposed mice with significant changes in the percentage of myelinated axons and g-ratios. Our data demonstrate that exposure to all types of high-energy charged particles have a detrimental effect, with helium and silicon having more synaptotoxic effects than oxygen. These results have important implications for the integrity of the central nervous system and the cognitive health of astronauts after prolonged periods of space exploration.


Assuntos
Partículas Elementares , Bainha de Mielina/efeitos da radiação , Sinapses/efeitos da radiação , Animais , Axônios/efeitos da radiação , Axônios/ultraestrutura , Espinhas Dendríticas/efeitos da radiação , Comportamento Exploratório/efeitos da radiação , Hélio , Hipocampo/citologia , Hipocampo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/ultraestrutura , Oxigênio , Silício , Sinapses/ultraestrutura
12.
Sci Rep ; 6: 26199, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229916

RESUMO

Major histocompatibility complex class I (MHCI) proteins have been implicated in neuronal function through the modulation of neuritogenesis, synaptogenesis, synaptic plasticity, and memory consolidation during development. However, the involvement of MHCI in the aged brain is unclear. Here we demonstrate that MHCI deficiency results in significant dendritic atrophy along with an increase in thin dendritic spines and a reduction in stubby spines in the hippocampus of aged (12 month old) mice. Ultrastructural analyses revealed a decrease in spine head diameter and post synaptic density (PSD) area, as well as an increase in overall synapse density, and non-perforated, small spines. Interestingly, we found that the changes in synapse density and morphology appear relatively late (after the age of 6 months). Finally, we found a significant age dependent increase in the levels of the glutamate receptor, GluN2B in aged MHCI knockout mice, with no change in GluA2/3, VGluT1, PSD95 or synaptophysin. These results indicate that MHCI may be also be involved in maintaining brain integrity at post-developmental stages notably in the modulation of neuronal and spine morphology and synaptic function during non-pathological aging which could have significant implications for cognitive function.


Assuntos
Envelhecimento , Hipocampo/citologia , Hipocampo/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Animais , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Knockout
13.
Mol Neurodegener ; 9: 41, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25312309

RESUMO

BACKGROUND: Mounting evidence suggests that soluble oligomers of amyloid-ß (oAß) represent the pertinent synaptotoxic form of Aß in sporadic Alzheimer's disease (AD); however, the mechanistic links between oAß and synaptic degeneration remain elusive. Most in vivo experiments to date have been limited to examining the toxicity of oAß in mouse models that also possess insoluble fibrillar Aß (fAß), and data generated from these models can lead to ambiguous interpretations. Our goal in the present study was to examine the effects of soluble oAß on neuronal and synaptic structure in the amyloid precursor protein (APP) E693Q ("Dutch") mouse model of AD, which develops intraneuronal accumulation of soluble oAß with no detectable plaques in AD-relevant brain regions. We performed quantitative analyses of neuronal pathology, including dendrite morphology, spine density, and synapse ultrastructure in individual hippocampal CA1 neurons. RESULTS: When assessing neuronal morphology and complexity we observed significant alterations in apical but not in basal dendritic arbor length in Dutch mice compared to wild type. Moreover, Dutch mice exhibited a significant decrease in dendritic arborization with a decrease in dendritic length and number of intersections at 120 µm and 150 µm from the soma, respectively. We next examined synaptic parameters and found that while there were no differences in overall synaptic structure, Dutch mice displayed a significant reduction in the post-synaptic density (PSD) length of synapses on mushroom spines, in comparison to wild type littermates. CONCLUSION: The structural alterations to individual neurons in Dutch mice along with the changes in larger dendritic spines support the Aß oligomer hypothesis, which postulates that the early cognitive impairments that occur in AD are attributed to the accumulation of soluble oAß first affecting at the synaptic level with subsequent structural disturbances and cellular degeneration.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo/patologia , Sinapses/patologia , Animais , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Placa Amiloide
14.
J Comp Neurol ; 522(10): 2319-35, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24415002

RESUMO

Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid-ß protein, may underlie the observed neuronal loss.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Medo , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células , Sinais (Psicologia) , Dendritos/metabolismo , Dendritos/patologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...